

2

TRANSFORMING NETWORKING & STORAGE

About Myself:

I am a working for Intel for various projects, primarily Kernel networking.

My website: http://ramirose.wix.com/ramirosen

I am the author of a book titled “Linux Kernel Networking” by Apress,

648 pages, 2014:

http://ramirose.wix.com/ramirosen
http://www.apress.com/9781430261964

Agenda:

Overview of the cgroup subsystem and the namespace subsystem

cgroups

The PIDs cgroup controller

cgroup v2

namespaces

Backup

• The namespace subsystem and the cgroup

subsystem are the basis of lightweight process

virtualization.

• They form the basis of Linux containers.

• Can be used also for setting a testing environment or as a resource

management/resource isolation setup and for accounting.

• We will talk mainly about the kernel implementation with

some userspace usage examples.

lightweight process virtualization: A process which gives the user

an illusion that he runs a Linux operating system. You can run

many such processes on a machine, and all such processes in

fact share a single Linux kernel which runs on the machine.

This is opposed to hypervisor solutions, like Xen or KVM, where you run another instance of

the kernel.

The idea is not really a new paradigm - we have Solaris Zones and BSD jails already several

years ago.

It seems that Hypervisor-based VMs like KVM are here to stay (at least for the next several

years). There is an ecosystem of cloud infrastructure around solutions like KVMs.

Advantages of Hypervisor-based VMs (like KVM) :

• You can create VMs of other operating systems (windows, BSDs).

• Security

• Though there were cases of security vulnerabilities which were found and required installing patches to

handle them (like VENOM).

Containers – advantages:

• Lightweight: occupies less resources (like memory) significantly then a hypervisor.

• Density: you can install many more containers on a given host then KVM based VMs.

• Elasticity: startup time and shutdown time is much shorter, almost instantaneous. Creation of a

container has the overhead of creating a Linux process, which can be of the order of milliseconds, while

creating a VM based on XEN/KVM can take seconds.

The lightness of the containers in fact provides both their density and their elasticity.

Containers versus Hypervisor-based VMs

The cgroup (control groups) subsystem is a Resource Management

and Resource Accounting/Tracking solution, providing a generic

process-grouping framework.

● It handles resources such as memory, cpu, network, and more;

mostly needed in both ends of the spectrum (servers and embedded).

● Development was started by engineers at Google in 2006 under the

name "process containers”.

● Merged into kernel 2.6.24 (2008).

● cgroup core has 3 maintainers, and each cgroup controller has its

own maintainers.

cpu, memory and io are the most important resources that cgroup deals with. For

networking, it's mostly about allowing network layer to match packets to cgroups.

The actual control part still happens on the network side through iptables and tc.

The cgroup subsystem: background

No new system call was needed in order to support cgroups.

A new file system (VFS), "cgroup“ (also referred sometimes as cgroupfs).

The implementation of the cgroup subsystem required a few, simple hooks into the rest of the

kernel, none in performance-critical paths:

– In boot phase (init/main.c) to perform various initializations.

– In process creation and termination methods, fork() and exit().

– Minimal additions to the process descriptor (struct task_struct)

– Add procfs entries:

● For each process: /proc/pid/cgroup.

● System-wide: /proc/cgroups

cgroup subsystem implementation

• The cgroups subsystem (v1 and v2) is composed of 2 ingredients:

– cgroup core.

• Mostly in kernel/cgroup.c (~6k lines of code).

• The same code serves both cgroup V1 and cgroup V2.

– cgroup controllers.

• Currently there are 12 cgroup v1 controllers and 3 cgroup v2 controllers (memory, io, and

pids) and there are other v2 controllers which are under work in progress.

• For both v1 and v2, these controllers are represented by cgroup_susbsys objects.

cgroup subsystem implementation - contd

In order to use the cgroups filesystem (browse it/attach tasks to cgroups, etc.) it must be

mounted, as any other filesystem. The cgroup filesystem can be mounted on any path on the

filesystem. Systemd and various container projects uses /sys/fs/cgroup as a mounting point.

When mounting, we can specify with mount options (-o) which cgroup controllers will be used

(can be a bitmask of controllers, and also all controllers):

Example: mounting the net_prio cgroup controller:

mount -t cgroup -onet_prio none /sys/fs/cgroup/net_prio

Mounting cgroups

Name Kernel Object name Module

blkio io_cgrp_subsys block/blk-cgroup.c

cpuacct cpuacct_cgrp_subsys kernel/sched/cpuacct.c

cpu cpu_cgrp_subsys kernel/sched/core.c

cpuset cpuset_cgrp_subsys kernel/cpuset.c

devices devices_cgrp_subsys security/device_cgroup.c

freezer freezer_cgrp_subsys kernel/cgroup_freezer.c

hugetlb hugetlb_cgrp_subsys mm/hugetlb_cgroup.c

memory memory_cgrp_subsys mm/memcontrol.c

net_cls net_cls_cgrp_subsys net/core/netclassid_cgroup.c

net_prio net_prio_cgrp_subsys net/core/netprio_cgroup.c

perf_event perf_event_cgrp_subsys kernel/events/core.c

pids pids_cgrp_subsys kernel/cgroup_pids.c

Kernel 4.4 cgroup v1 – 12 controllers

tasks release_agent Note: the release_agent and sane_behavior

appear only on root

cgroup.clone_children notify_on_release

cgroup.event_control cgroup.sane_behavior

cgroup.procs memory.memsw.usage_in_bytes

memory.move_charge_at_immigrate memory.memsw.max_usage_in_bytes

memory.numa_stat memory.memsw.failcnt

memory.oom_control memory.memsw.limit_in_bytes

memory.kmem.limit_in_bytes memory.pressure_level

memory.kmem.max_usage_in_bytes memory.soft_limit_in_bytes

memory.kmem.slabinfo memory.stat

memory.kmem.tcp.failcnt memory.swappiness

memory.kmem.tcp.limit_in_bytes memory.usage_in_bytes

memory.kmem.tcp.max_usage_in_bytes memory.use_hierarchy

memory.kmem.tcp.usage_in_bytes memory.failcnt

memory.kmem.usage_in_bytes memory.force_empty

memory.limit_in_bytes memory.kmem.failcnt

Memory controller interface files

mkdir /sys/fs/cgroup/memory/group0

• The tasks entry that is created under group0 is empty (processes are called tasks in cgroup

terminology).

echo 0 > /sys/fs/cgroup/memory/group0/tasks

• The pid of the current bash shell process is moved from the memory controller in which it

resides into group0 memory controller group.

echo 40M > /sys/fs/cgroup/memory/group0/memory.limit_in_bytes

You can disable the out of memory killer with memcg:

echo 1 > /sys/fs/cgroup/memory/group0/memory.oom_control

Example 1: memcg (memory control groups)

memcg (memory control groups) - contd

With containers, the same can be done from the host:

lxc-cgroup -n myfedora memory.limit_in_bytes 40M

cat /sys/fs/cgroup/memory/lxc/myfedora/memory.limit_in_bytes

41943040

Or for assigning the processors 0 and 1 to the container:

lxc-cgroup -n myfedora cpuset.cpus "0,1"

cghost:/$cat /sys/fs/cgroup/cpuset/lxc/myfedora/cpuset.cpus

0-1

docker run -i --cpuset=0,2 -t fedora /bin/bash

cat /sys/fs/cgroup/cpuset/system.slice/docker-64bit_ID.scope/cpuset.cpus

0,2

The release agent mechanism is invoked when the last process of a cgroup terminates.

● The cgroup release_agent entry should be set to a path to an executable/script to be invoked

when the last process in a group terminates.

● The cgroup notify_on_release entry should be set so that release_agent will be invoked.

echo 1 > /sys/fs/cgroup/memory/notify_on_release

The release_agent can be set also via a mount option; systemd, for example, use this

mechanism. For example in Fedora 21, mount shows:

cgroup on /sys/fs/cgroup/systemd type cgroup

(rw,nosuid,nodev,noexec,relatime,xattr,release_agent=/usr/lib/systemd/systemd-cgroups-

agent,name=systemd)

Example 2: release_agent in memcg

Also referred to as : devcg (devices control group)

• It is more of an access controller than a resource controller.

● devices cgroup provides enforcing restrictions on reading, writing and creating (mknod)

operations on device files.

● 3 control files: devices.allow, devices.deny, devices.list.

– devices.allow can be considered as devices whitelist

– devices.deny can be considered as devices blacklist.

– devices.list available devices.

● Each entry in these files consist of 4 fields:

– type: can be a (all), c (char device), or b (block device).

● All means all types of devices, and all major and minor numbers.

– Major number.

– Minor number.

– Access: composition of 'r' (read), 'w' (write) and 'm' (mknod).

Example 3: devices control group

/dev/null major number is 1 and minor number is 3 (see Documentation/devices.txt)

mkdir /sys/fs/cgroup/devices/group0

By default, for a new group, you have full permissions:

cat /sys/fs/cgroup/devices/group0/devices.list

a *:* rwm

echo 'c 1:3 rmw' > /sys/fs/cgroup/devices/group0/devices.deny

This denies rmw access from /dev/null device.

echo 0 > /sys/fs/cgroup/devices/group0/tasks # Attaches the current shell to group0

echo "test" > /dev/null

bash: /dev/null: Operation not permitted

devices control group – example (contd)

PIDs cgroup controller
• An anti-fork-bomb solution by a new cgroup controller.

• Adds a cgroup controller to enable limiting the number of processes that

can be forked inside a cgroup.

• Implementation of the prlimit(2)/RLIMIT_NPROC but to a cgroup and not to a

process.

• The PIDs space is a limited resource space, about 4 million pids system-wide.

• PID_MAX_LIMIT=4,194,304 (0x400000) see: include/linux/threads.h.

 With nowadays RAM capacities, all of them can be used up by a single container,

making the whole system unusable. The PIDs cgroup controller can help avoiding

this by limiting the number of processes per cgroup.

• Developed by Aleksa Sarai and integrated into the kernel since v4.3

 A simple and short module, ~300 lines of code only, kernel/cgroup_pids.c

PIDs cgroup controller - contd

The PID cgroup controller has two interface files:

• pids.max (Read/Write)

– The maximum number of processes for the cgroup.

– Does not exist for the root cgroup directory.

– For subgroups, the value is “max”, which is about 4,000,000.

 pids.current (Read only)

– The number of processes currently in the cgroup and its children

- Also of processes of a child on which PIDs controller is not enabled.

– Does not include zombies.

– Does not exist for the root cgroup directory

– When the number of processes in a group exceeds its pids.max, you will get

this error: fork: Resource temporarily unavailable.

cgroup v2 - background
• cgroup v1 is the existing cgroup kernel implementation (also referred to as

legacy cgroup in cgroup/LKML/other mailing lists).

• “Unified Hierarchy” development features are available over three years with

special mount option (__DEVEL__sane_behavior).

• From kernel 4.4 (January 2016), cgroup V2 is an official part of the kernel

with special filesystem type.

• Systemd has initial support to cgroup v2 since v226, September 2015.

• Also cgmanager added initial support for cgroup v2 (by Serge Hallyn)

• Why cgroup v2 ?

• A lot of chaos in cgroupv1.

– no consistency across cgroup controllers; for example:

– When creating a new controller, in several controllers the attribute values are inherited from the parent

(like net_prio and net_cls), and in several others the attribute values are the defaults, regardless of the

parent.

– For cpuset, changes in the parent are propagated to its descendants, whereas with all controllers they

are not (clone_children should be set for this),

– With cgroup v1, some controllers have controller-specific interface files in the root cgroup while

others don’t have.

– cgroup v2 establishes a strict and consistent interfaces

– In cgroup v2, there is only one hierarchy, “the unified hierarchy”. Each process can belong to only a single cgroup.

cgroup-v2.txt in kernel Documentation describes in detail cgroup v1 inconsistencies:

cgroup v2 - background

tree -L 1 /sys/fs/cgroup/ on Fedora 23: (cgroup v1 – multiple

hierarchies)
├── blkio

├── -> cpu,cpuacct

├── cpuacct -> cpu,cpuacct

├── cpu,cpuacct

├── cpuset

├── devices

├── freezer

├── hugetlb

├── memory

├── net_cls -> net_cls,net_prio

├── net_cls,net_prio

├── net_prio -> net_cls,net_prio

├── perf_event

└── systemd

Unlike cgroup v1, cgroup v2 has only a

single hierarchy and is strict about

hierarchical behavior.

• Enabling/Disabling of a controller is done always by the cgroup parent

rather than by the cgroup itself (subtree_control).

• Interface files - semantics

• When a controller implements an absolute resource limit, the interface files

should be named "min" and "max“ respectively (for example, pids.max for

the PIDs controller)

• When a controller implements best effort resource limit, the interface files

should be named "low“ and "high" respectively.
• used for example, in the memory controller.

• A special token "max" is used for these interface files (write/read),

representing infinity.

• Mounting cgroup v2 is done by:

– mount -t cgroup2 none $MOUNT_POINT

● The mount point can be anywhere in the filesystem.

cgroup v2 controllers
 As opposed to cgroups v1, there are no cgroup mount options in cgroup v2.

 When the system boots, both cgroup v1 filesystem and cgroup v2 filesystem are

registered, so you can work with a mixture of cgroup v1 and cgroup v2

controllers.

 You cannot use the same type of controller simultaneously both in cgroup v1

and cgroup v2.

The root cgroup object

• After mounting /cgroup2 with mount -t cgroup2 none /cgroup2, a root cgroup

object is created.

• The following three cgroup core interface files are created under the

/cgroup2 mount point:

/cgroup2/

├── cgroup.controllers

├── cgroup.procs

└── cgroup.subtree_control

Next we will describe these three cgroup core interface files.

There is a single root cgroup object, and it does not

have any resource control interface files.

• cgroup.controllers (A read-only file).

– Shows the supported cgroup controllers. In cgroup v2, we have currently support for the memory, io and pids

cgroup controllers only. All v2 controllers which are not bound to a v1 hierarchy are automatically bound to the

v2 hierarchy and show up at the root, so reading cgroup.controllers will give io memory pids

• cgroup.procs (A read-write file)

– The list of PIDs of processes in the group; contains the PIDs of all processes in the system after mount

(zombie processes do not appear in "cgroup.procs" and thus can't be moved to another cgroup).

The root cgroup object – contd.

The root cgroup object – contd.

• cgroup.subtree_control (A read-write file.)

– This entry is empty after mount, as no controller is enabled by default.

– Enabling cgroup v2 controller is done by writing to cgroup.subtree_control.

– For example, enabling the memory controller is done by:

– echo “+memory” > /cgroup2 /cgroup.subtree_control

– Disabling the memory controller can be done, for example, by:

- echo “-memory” > /cgroup2/ cgroup.subtree_control

• Creating a cgroup is done by mkdir (like in cgroup v1), for example:

– mkdir /cgroup2/group1

– After running this command, four cgroup core “cgroup.” prefixed entries are created and also several

interface files for the cgroup controllers enabled in the parent, as we will immediately see.

group1/
├── cgroup.controllers

├── cgroup.procs

├── cgroup.events

└── cgroup.subtree_control

All cgroup core interface files are prefixed with "cgroup.“

Next we will see the entries which are created when running “mkdir /cgroup2/group1”.

Creating a subgroup

The set of these 4 cgroup interface

files is the v2 hierarchy itself and is

referred to internally as “the default

hierarchy”.

• /cgroup2/group1/cgroup.procs

– The list of PIDs of processes in this group; empty upon creation.

• /cgroup2/group1/cgroup.controllers

– The subgroup enabled controllers. For subgroups, this will show the controllers that were

enabled in the parent by writing to subtree_control. When changing the subtree_control in the

parent, changes are propagated to the child cgroup.contorllers

• /cgroup2/group1/cgroup.subtree_control

– Initialized to be empty for the child group. Also here, you can enable only controllers which

appear in the cgroups.controllers of this cgroup (group1).

• /cgroup2/group1/cgroup.events

– Contains only one field, "populated”; 0 means no live process in this cgroup and its

descendants, 1 otherwise. Upon creation of a subgroup, populated is 0

– monitoring changes of populated from userspace - with poll(), inotify() and

dnotify() , as opposed to call_usermodehelper() in cgroup v1.

subgroup interface files

You can attach processes only to leaves.

You cannot attach a process to an internal subgroup if it has any

controller enabled.

• Controllers can be enabled by either writing to subtree_control of the

parent or implicitly via controllers dependency.

• The idea is that only processes of the leaves can compete on

resources. This scheme is more well organized.

• The only exception for this is the cgroup root object.

• This is opposed to cgroup v1, which allowed threads to be in any cgroups

• See “2-4-3. No Internal Process Constraint” in cgroup-v2.txt.

No Internal Process rule

A controller can't be disabled if one or more descendants have it

enabled.

multi-destination migration as a result of subtree_control enabling:

Run this sequence:

mount –t cgroup2 nodev /cgroup2

mkdir /cgroup2/group1

mkdir /cgroup2/group1/nested1

mkdir /cgroup2/group1/nested2

echo +pids > cgroup2/cgroup.subtree_control

cgroup2 example

34

TRANSFORMING NETWORKING & STORAGE

echo +pids > cgroup2/group1/cgroup.subtree_control

• What happens if there were processes in nested1 and nested2

before running:

echo +pids > cgroup2/group1/cgroup.subtree_controller?

• An inner cgroup_subsys_state (css) object is created for that group.

• The processes in nested1 and nested2 should be migrated to this css.
• With PIDs controller, attaching a process to a cgroup will never fail

• For other controllers, there are cases when the attaching a process to a cgroup will fail, for example, when the

CLONE_IO is set (for cgroup v1 as well as cgroup v2).

• Migrating the processes should also handle implicit controllers.

Migrating processes and threads

• cgroup v2 is process-granular.

• Every process in the system belongs to one and only one cgroup.

• All threads of a process belong to the same cgroup.

• A process can be migrated into a cgroup by writing its PID to the target

cgroup's cgroup.procs file.

• Writing the PID of any thread of a process to cgroup.procs of a destination

cgroup migrates all the threads of the process into the destination cgroup

(including the main process).

• This is opposed to cgroup v1 thread granularity, which allowed different

threads of a process to belong to different cgroups.

• When forking other processes from inside a process, migrating of a parent

process to another cgroup does not affect the existing child processes, and

migrating of a child process does not affect the parent process.

Finding matches based on the cgroup name in cgroup v2 (which is done by the --path parameter) is based

on getting the cgroup to which the process holding the socket belongs. Practically, this mechanism is not

possible in cgroup v1 as a process can belong to more than one cgroup. In cgroup v2 we have only the

match by path capability. An example for a rule for matching traffic which originates from sockets created in

a group called “test”, or its subgroups, can be

iptables -A OUTPUT -m cgroup --path test -j LOG

This is based to extension of the xt_cgroup netfilter match module (adding a new revision) ,

net/netfilter/xt_cgroup.c. The xt_cgroup module can be used both for cgroup v1 and cgroup v2.

Create a cgroupv2 group named test and move the current shell to it:

mkdir /cgroup2/test

echo 0 > /cgroup2/test/cgroup.procs

cgroup v2- match subgroup by path

39

TRANSFORMING NETWORKING & STORAGE

Now every socket created in this shell will have a pointer to the cgroup subgroup in which it was created,
namely the “test” group.

A sock_cgroup_data object, which contains per-socket cgroup information:

was added to the sock object. It includes:

• A pointer to the cgroup in which the socket is created.

• assigned when the socket is created

• prioidx

• classid

• is_data – 0 indicates a cgroup pointer , 1 indicates prioidx or classid.

• Note: once net_prio or net_class will be used, that pointer in the socket will no longer point to the
cgroup, but to the priority or classid.

INTEL CONFIDENTIAL Doc #xxxxx

rr:/$echo 5 > /sys/fs/cgroup/net_prio/net_cls.classid

rr:/$mkdir /sys/fs/cgroup/net_prio/group1

/sys/fs/cgroup/net_prio/group1/net_cls.classid will be 5 as it is inherited.

echo $$ > /sys/fs/cgroup/net_prio/group1/tasks

iptables -A OUTPUT -m cgroup --cgroup 5 -j LOG

This will trigger again logging the packets to syslog.

cgroup v2- match cgroup example -contd

Development took over a decade: Namespaces implementation started in about 2002.There

are currently 6 namespaces in Linux:

● mnt (mount points, filesystems)

● pid (processes)

● net (network stack)

● ipc (System V IPC)

● uts (hostname)

● user (UIDs)

A process can be created in Linux by the fork(), clone() or vclone() system calls. In order to

support namespaces, 6 flags (CLONE_NEW*) were added. These flags (or a combination of

them) can be used in clone() or unshare() system calls to create a namespace.

Namespaces

Clone flag Kernel Version Required capability

CLONE_NEWNS 2.4.19 CAP_SYS_ADMIN

CLONE_NEWUTS 2.6.19 CAP_SYS_ADMIN

CLONE_NEWIPC 2.6.19 CAP_SYS_ADMIN

CLONE_NEWPID 2.6.24 CAP_SYS_ADMIN

CLONE_NEWNET 2.6.29 CAP_SYS_ADMIN

CLONE_NEWUSER 3.8 No capability is required

Namespaces clone flags

Namespaces API consists of these 3 system calls:

● clone() - creates a new process and a new namespace; the newly created process is

attached to the new namespace.

– The process creation and process termination methods, fork() and exit(), were patched to

handle the new namespace CLONE_NEW* flags.

● unshare() – gets only a single parameter, flags. Does not create a new process; creates a

new namespace and attaches the calling process to it.

– unshare() was added in 2005.

see “new system call, unshare” : http://lwn.net/Articles/135266/

● setns() - a new system call, for attaching the calling process to an existing namespace;

prototype: int setns(int fd, int nstype);

Namespaces system calls

http://lwn.net/Articles/135266/

UTS namespace provides a way to get information about the system with commands like uname

or hostname.

UTS namespace was the most simple one to implement.

There is a member in the process descriptor called nsproxy.

A member named uts_ns (uts_namespace object) was added to it.

The uts_ns object includes an object (new_utsname struct) with 6 members:

• sysname

• nodename

• release

• version

• machine

• domainname

UTS namespace

In order to implement the UTS namespace, usage of global variables was replaces by accessing

the corresponding members in the UTS namespace via the new nsproxy object of the process

descriptor.

See for example the implementation of gethostname() , sethostname() and uname() syscalls.

For IPC namespaces, the same principle as in UTS namespace.

For Mount namespace, a member named mnt_ns (mnt_namespace object) was added to the

nsproxy.

● In the new mount namespace, all previous mounts will be visible; and from now on,

mounts/unmounts in that mount namespace are invisible to the rest of the system.

● mounts/unmounts in the global namespace are visible in that namespace.

● Added a member named pid_ns (pid_namespace object) to the nsproxy struct.

● Processes in different PID namespaces can have the same process ID.

● When creating the first process in a new PID namespace, its PID is 1.

● Behavior like the “init” process:

– When a process dies, all its orphaned children will now have the process with PID 1 as their

parent (child reaping).

– Sending SIGKILL signal does not kill process 1, regardless of in which namespace the

command was issued (initial namespace or other pid namespace).

● pid namespaces can be nested, up to 32 nesting levels. (MAX_PID_NS_LEVEL)

• A usecase for PID namespaces: the CRIU project

PID namespaces

● Added a member named user_ns (user_namespace object) to the credentials object (struct

sched).

• Also each namespace includes a pointer to a user_namespace object.

Each process will have distinct set of UIDs, GIDs and capabilities.

User namespace enables non root user to create a process in which it will be root.

Anatomy of a user namespaces vulnerability:

By Michael Kerrisk, March 2013

An article about CVE 2013-1858 - exploitable security

vulnerability

http://lwn.net/Articles/543273/

User Namespaces

http://lwn.net/Articles/543273/

● A network namespace is logically another copy of the network stack,

with its own routing tables, firewall rules, and network devices.

● The network namespace is represented by a huge struct net. (defined

in include/net/net_namespace.h).

Method in the stack which change the state were adjusted to have the

net object as a parameter and set its members accordigly.

struct net includes all network stack ingredients, like:

• – Loopback device.

• – SNMP stats. (netns_mib)

• – All network tables: routing, neighboring, etc.

• – All sockets

• – /procfs and /sysfs entries.

Network Namespaces

At a given moment -

• A network device belongs to exactly one network namespace.

• A socket belongs to exactly one network namespace.

The default initial network namespace, init_net (instance of struct net), includes the loopback

device and all the physical devices, the networking tables, etc.

● Each newly created network namespace includes only the loopback device.

Create two namespaces, called "myns1" and "myns2":

● ip netns add myns1

● ip netns add myns2

• This triggers creation of /var/run/netns/myns1,/var/run/netns/myns2 empty folders and invoking the

unshare() system call with CLONE_NEWNET.

You delete a namespace by:

● ip netns del myns1

– This unmounts and removes /var/run/netns/myns1

Example

You can move a network interface (eth0) to myns1 network namespace:

● ip link set eth0 netns myns1

There are other subcommands for monitoring namespaces, running a command in a

namespace/in all namespaces, listing the network namespaces which were created with the ip

netns command and more:

ip netns monitor, ip netns exec myns1 bash, ip -all netns exec ip link, ip netns list

Applications which usually look for configuration files under /etc (like /etc/hosts or

/etc/resolv.conf), will first look under /etc/netns/NAME/, and only if nothing is available there, will

look under /etc.

cgroup namespace

• Provides a new namespace, which gives the ability to remember the cgroup

of the process at the point of creation of the cgroup namespace. Supports

both cgroup v1 and cgroup v2.

• Implementation: a new CLONE flag was added, CLONE_NEWCGROUP, and a

new object was added to nsproxy, representing cgroup namespace, cgroup_ns.

The /proc/<pid>/cgroup file may leak potential system level information to the

isolated processes. For example, without cgroup namespaces:

$ cat /proc/self/cgroup

0:cpuset,cpu,cpuacct,memory,devices,freezer,hugetlb:/batchjobs/container_id1

But with cgroup namespaces, from within new cgroupns,

cat /proc/self/cgroup

0:cpuset,cpu,cpuacct,memory,devices,freezer,hugetlb:/

Legal Disclaimer

53

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL
APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS,
DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION
CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm%20 Performance tests and ratings are
measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual
performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products, visit Intel
Performance Benchmark Limitations

All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Celeron, Intel, Intel logo, Intel Core, Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel SpeedStep, Intel XScale, Itanium, Pentium, Pentium Inside, VTune, Xeon, and Xeon Inside are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Intel® Active Management Technology requires the platform to have an Intel® AMT-enabled chipset, network hardware and software, as well as connection with a power source and a corporate network connection. With regard to notebooks, Intel
AMT may not be available or certain capabilities may be limited over a host OS-based VPN or when connecting wirelessly, on battery power, sleeping, hibernating or powered off. For more information, see http://www.intel.com/technology/iamt.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and applications enabled for Intel® 64 architecture. Performance will vary depending on your hardware and software
configurations. Consult with your system vendor for more information.

No computer system can provide absolute security under all conditions. Intel® Trusted Execution Technology is a security technology under development by Intel and requires for operation a computer system with Intel® Virtualization Technology, an
Intel Trusted Execution Technology-enabled processor, chipset, BIOS, Authenticated Code Modules, and an Intel or other compatible measured virtual machine monitor. In addition, Intel Trusted Execution Technology requires the system to contain a
TPMv1.2 as defined by the Trusted Computing Group and specific software for some uses. See http://www.intel.com/technology/security/ for more information.

†Hyper-Threading Technology (HT Technology) requires a computer system with an Intel® Pentium® 4 Processor supporting HT Technology and an HT Technology-enabled chipset, BIOS, and operating system. Performance will vary depending on
the specific hardware and software you use. See www.intel.com/products/ht/hyperthreading_more.htm for more information including details on which processors support HT Technology.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor (VMM) and, for some uses, certain platform software enabled for it. Functionality, performance or other benefits will vary
depending on hardware and software configurations and may require a BIOS update. Software applications may not be compatible with all operating systems. Please check with your application vendor.

* Other names and brands may be claimed as the property of others.

Other vendors are listed by Intel as a convenience to Intel's general customer base, but Intel does not make any representations or warranties whatsoever regarding quality, reliability, functionality, or compatibility of these devices. This list and/or
these devices may be subject to change without notice.

Copyright © 2016, Intel Corporation. All rights reserved.

5

4

5

5

56

TRANSFORMING NETWORKING & STORAGE

• The ability to make one controller dependent on another is one of the new features of cgroup v2.
• controller dependency is not possible in cgroup v1.

• This can be defined in code by setting the depends_on member of the cgroup_subsys.

• For example, the io controller depends on the memory controller.

struct cgroup_subsys io_cgrp_subsys = {

...

.depends_on = 1 << memory_cgrp_id,

...

};

• This means that enabling 'io' enables 'memory' *implicitly*, but it is not visible (no interface files)

Implicit controllers (cgroup v2)

57

TRANSFORMING NETWORKING & STORAGE

The net_cls controller – when creating new cgroup, the net_cls.classid value is propagated to
the existing subgroups:

rr:/sys/fs/cgroup/net_cls$ mkdir group1

rr:/sys/fs/cgroup/net_cls/group1$ echo 0x2 > net_cls.classid

r:/sys/fs/cgroup/net_cls/group1$ mkdir nested1

rr:/sys/fs/cgroup/net_cls/group1$ cat nested1/net_cls.classid

2

Note: after the child groups are created, changes in the parent are not propagated to the
existing child groups:

rr:/sys/fs/cgroup/net_cls/group1$ echo 0x1 > net_cls.classid

rr:/sys/fs/cgroup/net_cls/group1$ cat nested1/net_cls.classid

2

Example 1 (cgroup v1 propagation)

58

TRANSFORMING NETWORKING & STORAGE

The Following sequence shows propagation from parent when creating a new group:

rr:/sys/fs/cgroup/cpuset$ echo 1 > cgroup.clone_children

rr:/sys/fs/cgroup/cpuset$ mkdir group1

rr:/sys/fs/cgroup/cpuset$ echo 1-2 > group1/cpuset.cpus

rr:/sys/fs/cgroup/cpuset$ cat group1/cpuset.cpus

1-2

rr:/sys/fs/cgroup/cpuset$ cat group1/nested1/cpuset.cpus

1-2

Notes:

Without echo 1 > cgroup.clone_children this propagation won’t work.

The clone_children is effective only with the cpuset controller.

example 2 (cgroup v1 clone_children)

59

TRANSFORMING NETWORKING & STORAGE

s:/$mkdir /sys/fs/cgroup/net_prio/group1

s:/$echo "eth0 4" > /sys/fs/cgroup/net_prio/group1/net_prio.ifpriomap

This sets the netprio_map object of eth0 net_device.

This will set the priority of outgoing (egress) traffic of packets (skbs) of processes attached to
group1 to be 4.

This is implemented by the skb_update_prio() method

http://lxr.free-electrons.com/source/net/core/dev.c#L2926

This is done prior to queuing the packet with the qdisc (Queuing Discipline).

Setting the priority of a socket can be done by setting the SO_PRIORITY socket option, but this
option is not always available.

Example 3 – cgroup v1 net_prio

http://lxr.free-electrons.com/source/net/core/dev.c

60

TRANSFORMING NETWORKING & STORAGE

cgroup v1:

Run as root:

mkdir -p /sys/fs/cgroup/devices/group1/nested1

su user1

echo $$ > /sys/fs/cgroup/devices/group1/nested1/cgroup.procs

You will get –EPERM

But after you will set access permission to nested1 by running as root:

chown -R user1:user1 /sys/fs/cgroup/devices/group1/nested1/

Running it will succeed.

Example 4 : Delegation Containment

61

TRANSFORMING NETWORKING & STORAGE

In order to support delegation, three conditions should be met: the writer's euid must match
either uid or suid of the target process.The writer must have write access to the "cgroup.procs"
file. The writer must have write access to the "cgroup.procs" file of the common ancestor of the
source and destination cgroups.

Run as root:

echo $$

4767

mkdir -p /cgroup2/group1/nested1

chown –R user1:user1 /cgroup2/group1

echo $$ > /cgroup2/group1/cgroup.procs

su user1

echo 4767 > /cgroup2/group1/nested1/cgroup.procs

Example 4 : delegation containment – v2

62

TRANSFORMING NETWORKING & STORAGE

How do I know to which cgroup does a process belong to?

cat "/proc/$PID/cgroup" shows this info.

• The entry for cgroup v2 is always in the format "0::$PATH".

• So for example, if we created a cgroup named group1 and attached a task with PID 1000 to it, then
running:

cat "/proc/1000/cgroup

0::/group1

And for a nested group:

cat /proc/869/cgroup

0::/group1/nested

Getting info about cgroups

63

TRANSFORMING NETWORKING & STORAGE

/proc/cgroups shows info on both cgroup v1/cgroup v2. The hierarchy_id for cgroupv2 controllers is 0.

#subsys_name hierarchy num_cgroups enabled

cpuset 2 1 1

cpu 3 1 1

cpuacct 3 1 1

blkio 0 1 1

memory 0 1 1

devices 6 61 1

freezer 7 1 1

net_cls 8 1 1

perf_event 9 1 1

net_prio 8 1 1

hugetlb 10 1 1

pids 0 1 1

64

TRANSFORMING NETWORKING & STORAGE

For the memory controller:
• memory.current
• memory.events
• memory.high
• memory.low
• memory.max

• For the IO controller:
• io.max
• io.weight

Note: Work is currently being done by Vladimir Davydov, one of the
Memory Resource Controller (memcg) maintainers, for adding
cgroup v2 kmem accounting, so entries like memory.swap.current,
memory.swap.max are coming soon.

Cgroup v2 Control files (Interface files)

65

TRANSFORMING NETWORKING & STORAGE

Minor advantage: There is a single Linux kernel infrastructure for containers (namespaces and
cgroups) while for Xen an KVM we have two different implementations without any common
code.

Now run the following iptables rule (from anywhere in the system):

iptables -A OUTPUT -m cgroup --path test -j LOG

And then ping anywhere from the shell that is now a process in “test”.

The socket created has a pointer to “test” v2 cgroup, and the iptables match rule is for “test” (--
path test). So the packets will be dumped to syslog.

• Running this test from any subgroup of test will have the same result.

• The sum of the allocations of immediate subgroups can not exceed the amount of resources

available to the parent.

So, for example:

If in /cgroup2/group1

pids.max = 4

Then if in

/cgroup2/group1/nested1

/cgroup2/group1/nested2

There are together 4 processes, we cannot fork a fifth in either of them.

67

TRANSFORMING NETWORKING & STORAGE

The script in the following slide shows how to connect two namespaces
by veth (Virtual Ethernet drivers) so that you will be able to ping and
send traffic between them:

Script for connecting two namespaces

68

TRANSFORMING NETWORKING & STORAGE

ip netns add netA
ip netns add netB
ip link add name vm1-eth0 type veth peer name vm1-eth0.1
ip link add name vm2-eth0 type veth peer name vm2-eth0.1
ip link set vm1-eth0.1 netns netA
ip link set vm2-eth0.1 netns netB
ip netns exec netA ip l set lo up
ip netns exec netA ip l set vm1-eth0.1 up
ip netns exec netB ip l set lo up
ip netns exec netB ip l set vm2-eth0.1 up
ip netns exec netA ip a add 192.168.0.10 dev vm1-eth0.1
ip netns exec netB ip a add 192.168.0.20 dev vm2-eth0.1
ip netns exec netA ip r add 192.168.0.0/24 dev vm1-eth0.1
ip netns exec netB ip r add 192.168.0.0/24 dev vm2-eth0.1
brctl addbr mybr
ip l set mybr up
ip l set vm1-eth0 up
brctl addif mybr vm1-eth0
ip l set vm2-eth0 up
brctl addif mybr vm2-eth0

Script for connecting two namespaces

69

TRANSFORMING NETWORKING & STORAGE

RDMA cgroups controller –Parav Pandit:

https://lwn.net/Articles/674161/

The RDMA cgroup will support both V1 and V2.

eBPF cgroup Patches by Daniel Mack.

See

"Network filtering for control groups"

https://lwn.net/Articles/698073

State of CPU controller in cgroup v2

https://lkml.org/lkml/2016/8/5/368

Upcoming…

https://lwn.net/Articles/674161/
https://lwn.net/Articles/698073
https://lkml.org/lkml/2016/8/5/368

