
Better compute control for Android using
SchedTune and SCHED_DEADLINE

Patrick Bellasi, Juri Lelli (ARM)
Srinath Sridharan (Google)

SCHED_FIFO in Android (today)
● Used for some latency sensitive tasks

○ SurfaceFlinger (3-8ms every 16ms, RT priority 98)
○ Audio (<1ms every 3-5ms, low RT priority)
○ schedfreq kthread(s) (sporadic and unbounded, RT priority 50)
○ others

● Other latency sensitive tasks that are NOT SCHED_FIFO
○ UI thread (where app code resides, handles most animation and input events)
○ Render thread (generates actual OpenGL commands used to draw UI)
○ not SCHED_FIFO because

■ load balancing CPU selection is naive
■ RT throttling is too strict
■ Risk that these tasks can DoS CPUs

SCHED_FIFO (and beyond?)
● use SCHED_FIFO for UI and Render threads

○ Userspace support already in N-DR (to be released in AOSP in Dec timeframe)
○ EAS integrated RT cpu selection in-flight (to be part of MR2 release)

○ Results: ~10% (90th), ~12% (95th) and ~23%(99th) improvements in perf/Watt for jank
benchmarks

● TEMP_FIFO
○ demote to CFS instead of throttling (RT throttling)

SCHED_FIFO
throttling ->
SCHED_OTHER

replenishment ->
SCHED_FIFO
(while sleeping) SCHED_FIFO

on wakeup

SCHED_DEADLINE (instead of SCHED_FIFO?)
✓ long term ambition is to provide better QoS using SCHED_DEADLINE

https://linuxplumbersconf.org/2015/ocw//system/presentations/3063/original/lelli_slides.pdf

✓ if prototyping results are positive, mainline adoption of required modifications
should be easier to achieve (w.r.t. modifying SCHED_FIFO)

x missing features
○ https://github.com/jlelli/sched-deadline/wiki/TODOs

■ reclaiming (short term flexibility)
■ integration with schedutil
■ cgroup based scheduling

● demotion to CFS

guinea pig for next steps will probably be SurfaceFlinger
(16ms period, 3-8 ms runtime)

https://linuxplumbersconf.org/2015/ocw//system/presentations/3063/original/lelli_slides.pdf
https://linuxplumbersconf.org/2015/ocw//system/presentations/3063/original/lelli_slides.pdf
https://github.com/jlelli/sched-deadline/wiki/TODOs
https://github.com/jlelli/sched-deadline/wiki/TODOs

SchedTune in a Nutshell
● Enables the collection of task related information from informed runtimes

○ using a localized tuning interface to balance Energy Efficiency vs Performance Boost
○ extending Sched{Freq,Util} for OPP Selection and EAS for Task Placement

● OPP Selection: running at higher/lower OPP
○ makes a CPU appear artificially more (or less) utilized than it actually is
○ depending on which tasks are currently active on that CPU

● Task Placement: biasing CPU selection in the wake-up path
○ based on evaluation of the power-vs-performance trade-off
○ using a performance index definition which helps define:

how much power are we willing to spend to get a certain speedup for task time-to-completion?

● Uses CGroups to provide both global and per-task boosting
○ simple yet effective support for task classification

○ allows for more advanced use-cases where the boost value is tuned at run-time
e.g. replace powersave/performance governors, support for touch boosting...

A New Design Proposal for SchedTune
SchedTune Extending CPU Contoller

Boost value Using the existing cpu.shares attribute.
- by default tasks have a 1024 share
- boosted tasks gets a share >1024 (more CPU time to run)
- negative boosted tasks gets <1024 (less CPU time to run)

OPP biasing Add a new cpu.min_capacity attribute. Tasks in the group may be scheduled on a CPU which provides at least
this required minimum capacity

Negative boosting Add a new cpu.max_capacity attribute. Tasks in the group are never scheduled (when alone) on a cpu with a
higher CPU capacity than this value

CPU selection and
prefer_idle

The cpu.shares value can be used as a “flag” to know when a task is boosted. E.g. if cpu.shares > 1024 (or
another configurable threshold value) we look for an idle CPU.
The cpu.{min|max}_capacity can also bias the selection of a big|LITTLE CPU.

Latencies reduction Tasks with higher cpu.shares values are entitled to get more CPU time and this improves their chance to get
scheduled by preempting other tasks with lower share values.
NOTE: the CPU bandwidth that is not consumed by tasks with high cpu.shares value is still available for tasks
with lower share values.

Backup slides

SCHED_FIFO (and beyond?)
Tasks scheduled by SCHED_FIFO today (framework may not be aware of all, e.g.
drivers internals)

Task Priority Period Load

camera HFR request
thread

1 33 ms 3-4ms (measured on
Angler with CPU @
1.344GHz)

mmcqd 1 unknown .2-.5ms (measured by
taking heavy IO systraces
in extremely CPU
constrained situations on
bullhead)

audio client 2 3 to 5 ms depending on the
audio HAL

< 1 ms
(not enforced)

FastMixer 3 3 to 5 ms depending on the
audio HAL

< 1 ms

kernel IRQ 50 unknown unknown

cfinteractive 99 unknown unknown

surfaceflinger 98 16ms 3 to 8 ms (measured on
Pixel)

EDS thread in VR 99 12ms (not sure) 50ms (not sure)

SchedTune Backup Slides

SchedTune Discussion Points
● Is the CGroups interface a viable solution for mainline integration?

○ CGroups v2 discussions about per-process (instead of per-task) interface?

○ Are the implied overheads (e.g. for moving tasks) acceptable?

● How can we improve the definition of SchedTune’s performance index?
○ How much is task performance affected by certain scheduling decision?

○ How can we factor in all the potential slow-down threat?
e.g. co-scheduling, higher priority tasks, blocked utilization, interrupts pressure, etc

● Is negative boosting useful? Can we prove useful and improve the support
for negative boosting?

○ Where/When is useful to artificially lower the perceived utilization of a task?
identify use cases, e.g. background tasks, memory bounded tasks

Performance Boosting: What Does it Means?
● Speedup the time-to-completion for a task activation

○ by running at an higher capacity CPU (i.e. OPP)
■ i.e. small tasks on big cores and/or using higher OPPs

● To achieve such a goal we need:
○ A) Boosting strategy

■ Evaluate how much “CPU bandwidth” is required by a task
○ B) CPU selection biasing mechanism

■ Select a Cluster/CPU which (can) provide that bandwidth
■ Evaluate if the energy-performance trade-off is acceptable

○ C) OPP selection biasing mechanism
■ Configure selected CPU to provide (at least) that bandwidth
■ ... but possibly only while a boosted task is RUNNABLE on that CPU

○ ... do all that with no noticeable overhead

Patches Availablity and List Discussions
● The initial full stack has been split in two series

○ 1) Non EAS dependant bits
■ OPP selection biasing
■ Global boosting strategy
■ CGroups based per-task boosting support

Posted on LKML as RFCv1[1] and RFCv2[2]

○ 2) EAS dependant bits
■ CPU selection biasing
■ Energy model filtering

Available on AOSP and LSK for kernels 3.18 and v4.4 [3,4]

[1] https://lkml.org/lkml/2015/9/15/679
[2] http://www.mail-archive.com/linux-kernel@vger.kernel.org/msg1259645.html
[3] https://android.googlesource.com/kernel/common/+/android-3.18
[4] https://android.googlesource.com/kernel/common/+/android-4.4

https://lkml.org/lkml/2015/9/15/679
http://www.mail-archive.com/linux-kernel@vger.kernel.org/msg1259645.html
https://android.googlesource.com/kernel/common/+/android-3.18
https://android.googlesource.com/kernel/common/+/android-4.4

Boosting Strategy: Bandwidth Margin Computation
● Task utilization defines the task's required CPU bandwidth

○ To boost a task we need to inflate this requirement by adding a “margin”
○ Many different strategies/policies can be defined

● Main goals
○ Well defined meaning from user-space

■ 0% boost run @ min required capacity (MAX energy efficiency)
■ 100% boost run @ MAX possible speed (min time to completion)
■ 50%? ==> “something” exactly in between the previous two

○ Easy integration with SchedFreq and EAS
■ By working on top of already used signals
■ Thus providing a different “view” on the SEs/RQs utilization signals

Signal Proportional Compensation (SPC)
● The boost value is converted into an additional margin

○ Which is computed to compensate for max performance
■ i.e. the boost margin is a function of the current and max utilization

margin = boost pct ∗(max capacity − cur capacity) , boost pct ∈[0,1]

Ramp task: 5-60% @5% steps every 3[s] – SPC boost @30%

OPP Selection Biasing Mechanism
● Goal: account for boost margin on OPP selection
● Use RQ's boosted_utilization defined using:

○ Global boost value, when using global boosting
○ MAX boost-group's boost value, when using per-task boosting

CPU Selection Biasing Mechanism (1/3)
● Energy-Aware Wakeup Path

Goal: find a CPU which can host the boosted utilization
○ using the boosted_utilization signal on some EA wakeup checks

CPU Selection Biasing Mechanism (2/3)
● Evaluation of the Energy-Performance trade-off

Goal: evaluate if the increased energy consumption is compensated by a
“reasonable” performance gain

How much power are we willing to spend to get a certain speedup on
time-to-completion?

● Running small tasks on
higher capacity CPUs
requires more power

● Performance boost is
computed by the EM
evaluation step

CPU Selection Biasing Mechanism (3/3)
● PE Space Filtering

● 4 Performance-Energy Space
Regions

● 2 'cuts', mapped to the same
boost knob value

● “Standard” EAS behaviour for
boost=0

○ I.e. vertical cut

SchedTune OPP Boosting

Ramp_5_10_60 no boosting

Ramp_5_10_60 boost @30% CPU Capacity Biasing

"r5_10-60" : {
"kind" : "Ramp",
"params" : {

"period_ms" : 16,
"start_pct" : 5,
"end_pct" : 60,
"delta_pct" : 5,
"time_s" : 1,
"cpus" : [7],

},
"tasks" : 1,

},

RTApp Generated RAMP Task

CPU Frequency Selection
● The higher the boost value the higher the avg frequency in this example the

task is pinned to run on LITTLE

Performance Evaluation (1/2)
● RT-App extended to report slack time related metrics

○ too pessimistic on single period missing
■ keep adding negative slack even if the following activations complete in time
■ can be solved by resetting the metrics at each new activation

● Linaro proposed a “dropped-frames” counter
○ we should integrate that as well

Performance Evaluation (2/2)

Ramp task: 5-60% @5% steps every 3[s]

● Slack Time Distribution

SchedTune Performance Index
● Based on the composition of two metrics

Perf_idx = SpeedUp_idx − Delay_idx

● SpeedUp_Index: how much faster can the task run?

SpeedUp_idx = SUI = cpu_boosted_capacity − task_util

● Delay_Index: how much slowed-down can the task be?

Delay_idx = DLI = 1024 * cpu_util / (task_util + cpu_util)

